A DOE Energy Innovation Hub

2%3_ /\|:|| ; CASL-U-ZOlS-OO'?-OOO.

Dakota, A Multilevel Parallel
Object-Oriented Framework
for Design Optimization,
Parameter Estimation,
Uncertainty Quantification,
and Sensitivity Analysis:
Version 6.1 User's Manual

Brian M. Adams
Mohamed S. Ebeida
Michael S. Eldred
John D. Jakeman
Laura P. Swiler

J. Adam Stephens
Dena M. Vigil
Timothy M. Wildey
William J. Bohnhoff
Keith R. Dalbey
John P. Eddy
Kenneth T. Hu
Lara E. Bauman
Patricia D. Hough

Sandia National Laboratory

November 7, 2014

AT US, DEPARTMENT OF

{2} ENERGY

ATEE

Nuclear *
Energy




SAND2014-4633
Unlimited Release
July 2014
Updated November 7, 2014

Dakota, A Multilevel Parallel Object-Oriented Framework for
Design Optimization, Parameter Estimation, Uncertainty

Quantification, and Sensitivity Analysis:
Version 6.1 User’s Manual

Brian M. Adams, Mohamed S. Ebeida, Michael S. Eldred, John D. Jakeman,
Laura P. Swiler, J. Adam Stephens, Dena M. Vigil, Timothy M. Wildey
Optimization and Uncertainty Quantification Department

William J. Bohnhoff
Radiation Transport Department

Keith R. Dalbey
Mission Analysis and Simulation Department

John P. Eddy
System Readiness and Sustainment Technologies Department

Kenneth T. Hu
Validation and Uncertainty Quantification Department

Lara E. Bauman, Patricia D. Hough
Quantitative Modeling and Analysis Department

Sandia National Laboratories
P.O. Box 5800
Albuquerque, New Mexico 87185

CASL-U-2015-0087



Abstract

The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and
extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for
optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliabil-
ity, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitiv-
ity/variance analysis with design of experiments and parameter study methods. These capabilities may be used
on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer
nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement
abstractions of the key components required for iterative systems analyses, the Dakota toolkit provides a flexible
and extensible problem-solving environment for design and performance analysis of computational models on
high performance computers.

This report serves as a user’s manual for the Dakota software and provides capability overviews and procedures
for software execution, as well as a variety of example studies.
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Preface

The Dakota (Design Analysis Kit for Optimization and Terascale Applications) project started in 1994 as an inter-
nal research and development activity at Sandia National Laboratories in Albuquerque, New Mexico. The original
goal was to provide a common set of optimization tools for a group of engineers solving structural analysis and
design problems. Prior to the Dakota project, there was no focused effort to archive optimization methods for
reuse on other projects. Thus, engineers found themselves repeatedly building new custom interfaces between
the engineering analysis software and optimization software. This was especially burdensome when using par-
allel computing, as each project developed a unique master program to coordinate concurrent simulations on a
network of workstations or a parallel computer. The initial Dakota toolkit provided the engineering and analysis
community at Sandia access to a variety of optimization algorithms, hiding the complexity of the optimization
software interfaces from the users. Engineers could readily switch between optimization software packages by
simply changing a few lines in a Dakota input file. In addition to structural analysis, Dakota has been applied
to computational fluid dynamics, nonlinear dynamics, shock physics, heat transfer, electrical circuits, and many
other science and engineering models.

Dakota has grown significantly beyond an optimization toolkit. In addition to its state-of-the-art optimization
methods, Dakota includes methods for global sensitivity and variance analysis, parameter estimation, uncertainty
quantification, and verification, as well as meta-level strategies for surrogate-based optimization, hybrid optimiza-
tion, and optimization under uncertainty. Available to all these algorithms is parallel computation support; ranging
from desktop multiprocessor computers to massively parallel computers typically found at national laboratories
and supercomputer centers.

As of Version 5.0, Dakota is publicly released as open source under a GNU Lesser General Public License and
is available for free download world-wide. See http://www.gnu.org/licenses/lgpl.html for more
information on the LGPL software use agreement. Dakota Versions 3.0 through 4.2+ were licensed under the GNU
General Public License. Dakota public release facilitates research and software collaborations among Dakota
developers at Sandia National Laboratories and other institutions, including academic, government, and corporate
entities. See the Dakota FAQ at http://dakota.sandia.gov/faqg.html for more information on the
public release rationale and ways to contribute.

Dakota leadership includes Brian Adams (project lead), Mike Eldred (founder and research lead), Adam Stephens
(support manager), Dena Vigil (product owner), and Jim Stewart (business manager). For a listing of current
and former contributors and third-party library developers, visit the Dakota webpage at http://dakota.
sandia.gov.

Contact Information:

Brian M. Adams, Dakota Project Lead

Sandia National Laboratories

P.O. Box 5800, Mail Stop 1318

Albuquerque, NM 87185-1318

Web (including support information): http://dakota.sandia.gov
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Chapter 1

Introduction

1.1 Motivation for Dakota Development

Computational models are commonly used in engineering design and scientific discovery activities for simulating
complex physical systems in disciplines such as fluid mechanics, structural dynamics, heat transfer, nonlinear
structural mechanics, shock physics, and many others. These simulators can be an enormous aid to engineers who
want to develop an understanding and/or predictive capability for complex behaviors typically observed in the
corresponding physical systems. Simulators often serve as virtual prototypes, where a set of predefined system
parameters, such as size or location dimensions and material properties, are adjusted to improve the performance
of a system, as defined by one or more system performance objectives. Such optimization or tuning of the
virtual prototype requires executing the simulator, evaluating performance objective(s), and adjusting the system
parameters in an iterative, automated, and directed way. System performance objectives can be formulated, for
example, to minimize weight, cost, or defects; to limit a critical temperature, stress, or vibration response; or
to maximize performance, reliability, throughput, agility, or design robustness. In addition, one would often
like to design computer experiments, run parameter studies, or perform uncertainty quantification (UQ). These
approaches reveal how system performance changes as a design or uncertain input variable changes. Sampling
methods are often used in uncertainty quantification to calculate a distribution on system performance measures,
and to understand which uncertain inputs contribute most to the variance of the outputs.

A primary goal for Dakota development is to provide engineers and other disciplinary scientists with a systematic
and rapid means to obtain improved or optimal designs or understand sensitivity or uncertainty using simulation-
based models. These capabilities generally lead to improved designs and system performance in earlier design
stages, alleviating dependence on physical prototypes and testing, shortening design cycles, and reducing product
development costs. In addition to providing this practical environment for answering system performance ques-
tions, the Dakota toolkit provides an extensible platform for the research and rapid prototyping of customized
methods and meta-algorithms [27].

1.2 Dakota Capabilities

Dakota delivers a variety of iterative methods and meta-algorithms, and the ability to flexibly interface them to
your simulation code. While Dakota was originally conceived to more readily interface simulation codes and
optimization algorithms, recent versions go beyond optimization to include other iterative analysis methods such
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as uncertainty quantification with nondeterministic propagation methods, parameter estimation with nonlinear
least squares solution methods, and sensitivity/variance analysis with general-purpose design of experiments and
parameter study capabilities. These capabilities may be used on their own or as building blocks within more
sophisticated meta-algorithms such as hybrid optimization, surrogate-based optimization, optimization under un-
certainty, or mixed aleatory/epistemic UQ.

The principal classes of Dakota algorithms, with brief descriptions, are summarized here. For details, formula-
tions, and usage guidelines, see the referenced chapters.

e Parameter Studies (Chapter 3): Parameter studies employ deterministic designs to explore the effect of
parametric changes within simulation models, yielding one form of sensitivity analysis. They can help
assess simulation characteristics such as smoothness, multi-modality, robustness, and nonlinearity, which
affect the choice of algorithms and controls in follow-on optimization and UQ studies. Typical examples
include centered, one-at-a-time variations or joint variation on a grid.

e Design of Experiments (Chapter 4): Design and analysis of computer experiments (DACE) techniques
are often used to explore the parameter space of an engineering design problem, for example to perform
global sensitivity analysis. DACE methods can help reach conclusions similar to parameter studies, but the
primary goal of these methods is to generate good coverage of the input parameter space. Representative
methods include Latin hypercube sampling, orthogonal arrays, and Box-Behnken designs.

e Uncertainty Quantification (Chapter 5): Uncertainty quantification methods (also referred to as nonde-
terministic analysis methods) compute probabilistic information about response functions based on simu-
lations performed according to specified input parameter probability distributions. Put another way, these
methods perform a forward uncertainty propagation in which probability information for input parameters
is mapped to probability information for output response functions. Common approaches include Monte
Carlo sampling, reliability methods, and polynomial chaos expansions.

e Optimization (Chapter 6): Optimization solvers seek to minimize cost or maximize system performance,
as predicted by the simulation model, subject to constraints on input variables or secondary simulation re-
sponses. Categories of algorithms include gradient-based, derivative-free, and global optimization. Dakota
also includes capabilities for multi-objective trade-off optimization and automatic scaling of problem for-
mulations. Advanced Dakota approaches include hybrid (multi-method), multi-start local, and Pareto-set
optimization.

e Calibration (Chapter 7): Calibration algorithms seek to maximize agreement between simulation outputs
and experimental data (or desired outputs). They are used solve inverse problems (often referred to as
parameter estimation or least-squares problems). Dakota approaches include nonlinear least squares and
Bayesian calibration.

Dakota includes a number of related advanced capabilities. Surrogate models are inexpensive approximate mod-
els that are intended to capture the salient features of an expensive high-fidelity model and include data fits,
multifidelity, and reduced-order model surrogates. They can be used to explore the variations in response quanti-
ties over regions of the parameter space, or they can serve as inexpensive stand-ins for optimization or uncertainty
quantification studies. Section 8.4 summarizes surrogate model mechanics in Dakota, while optimization methods
tailored to particular surrogate approaches are surveyed in Section 14.5.

Nested models permit layering one Dakota method over another, enabling algorithms like mixed epistemic-
aleatory or second-order UQ, optimization under uncertainty, or surrogate-based UQ. Additional information
on these nested approaches is provided in Section 8.5 and Chapter 15.

The methods and algorithms in Dakota are designed to exploit parallel computing resources such as those found
in a desktop multiprocessor workstation, a network of workstations, or a massively parallel computing platform.
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Figure 1.1: The loosely-coupled or “black-box” interface between Dakota and a user-supplied simulation code.

This parallel computing capability is a critical technology for rendering real-world engineering design problems
computationally tractable. See Chapter 17.

Dakota also has emerging capabilities in solution verification and Bayesian calibration/UQ, which are documented
briefly in the Dakota Reference Manual, and in later sections of this manual.

1.3 Coupling Dakota to a Simulation

A key Dakota advantage is access to a broad range of iterative capabilities through a single, relatively simple,
interface between Dakota and your simulator. Trying a different iterative method or meta-algorithm typically
requires changing only a few commands in the Dakota text input file, and starting the new analysis. It does not
require intimate knowledge of the underlying software package integrated in Dakota, with its unique command
syntax and interfacing requirements. In addition, Dakota will manage concurrent executions of your computa-
tional model in parallel, whether on a desktop or high-performance cluster computer.

Figure 1.1 depicts a typical loosely-coupled relationship between Dakota and the simulation code(s). Such cou-
pling is often referred to as “black-box,” as Dakota has no (or little) awareness of the internal details of the
computational model, obviating any need for its source code. Such loose coupling is the simplest and most com-
mon interfacing approach Dakota users employ. Dakota and the simulation code exchange data by reading and
writing short data files. Dakota is executed with commands that the user supplies in a text input file (not shown
in Figure 1.1) which specify the type of analysis to be performed (e.g., parameter study, optimization, uncer-
tainty quantification, etc.), along with the file names associated with the user’s simulation code. During operation,
Dakota automatically executes the user’s simulation code by creating a separate process external to Dakota.

The solid lines in Figure 1.1 denote file input/output (I/O) operations inherent to Dakota or the user’s simulation
code. The dotted lines indicate passing or conversion of information that must be implemented by the user.
As Dakota runs, it writes out a parameters file containing the current variable values. Dakota then starts the
user’s simulation code (or, often, a short driver script wrapping it), and when the simulation completes, reads the
response data from a results file. This process is repeated until all of the simulation code runs required by the
iterative study are complete.

In some cases it is advantageous to have a close coupling between Dakota and the simulation code. This close
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coupling is an advanced feature of Dakota and is accomplished through either a direct interface or a SAND (si-
multaneous analysis and design) interface. For the direct interface, the user’s simulation code is modified to
behave as a function or subroutine under Dakota. This interface can be considered to be “semi-intrusive” in that
it requires relatively minor modifications to the simulation code. Its major advantage is the elimination of the
overhead resulting from file I/O and process creation. It can also be a useful tool for parallel processing, by en-
capsulating all computation in a single executable. For details on direct interfacing, see Section 16.2. A SAND
interface approach is “fully intrusive” in that it requires further modifications to the simulation code so that an
optimizer has access to the internal residual vector and Jacobian matrices computed by the simulation code. In
a SAND approach, both the optimization method and a nonlinear simulation code are converged simultaneously.
While this approach can greatly reduce the computational expense of optimization, considerable software devel-
opment effort must be expended to achieve this intrusive coupling between SAND optimization methods and the
simulation code. SAND may be supported in future Dakota releases.

1.4 User’s Manual Organization

The Dakota User’s Manual is organized into the following major categories. New users should consult the Tutorial
to get started, then likely the Method Tour and Interfacing to select a Dakota method and build an interface to
your code.

e Tutorial (Chapter 2): How to obtain, install, and use Dakota, with a few introductory examples.

e Method Tour (Chapters 3 through 7): Survey of the major classes of iterative methods included in Dakota,
with background, mathematical formulations, usage guidelines, and summary of supporting third-party
software.

e Models (Chapters 8 through 11): Explanation of Dakota models, which manage the mapping from variables
through interfaces to responses, as well as details on parameter and response file formats for simulation code
interfacing.

e Input/Output (Chapters 12 and 13): Summary of input to Dakota, including tabular data, and outputs
generated by Dakota.

e Advanced Topics:
— Recursion with Components: Chapter 14 addresses component-based method recursions and Chap-

ter 15 addresses component-based model recursions.

— Interfacing: Chapter 16 describes interfacing Dakota with engineering simulation codes in both
loose- and tightly-coupled modes.

— Parallelism: Chapter 17 described Dakota’s parallel computing capabilities, with a summary of major
application parallel modes in Section 17.7.

— Fault Tolerance: Chapter 18 describes restart capabilities and utilities and Chapter 19 explains ways
to detect and mitigate simulation failures.

¢ Additional Examples (Chapter 20): Supplemental example analysis problems and discussion.
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1.5 Files Referenced in this Manual

Dakota input files are shown in figures throughout the Manual. The filename is specified in the comments and un-
less specified otherwise, these files are available in the Dakota/examples/users directory, where Dakota
refers to the directory where Dakota was installed. Some of the input files have associated files, such as output or
tabular data, with the same base filename, and . sav appended to the names.

Additional files are referenced, and if the location differs then it will be specified in the text. A small number of
examples refer to files included only in the source directory, which is labeled Dakota_Source. You will need a
copy of the source to view these files - see Section 2.1.1.

1.6 Summary

Dakota is both a production tool for engineering design and analysis activities and a research tool for the develop-
ment of new algorithms in optimization, uncertainty quantification, and related areas. Because of the extensible,
object-oriented design of Dakota, it is relatively easy to add new iterative methods, meta-algorithms, simulation
interfacing approaches, surface fitting methods, etc. In addition, Dakota can serve as a rapid prototyping tool for
algorithm development. That is, by having a broad range of building blocks available (i.e., parallel computing,
surrogate models, simulation interfaces, fundamental algorithms, etc.), new capabilities can be assembled rapidly
which leverage the previous software investments. For additional discussion on framework extensibility, refer to
the Dakota Developers Manual [2].

The capabilities of Dakota have been used to solve engineering design and optimization problems at Sandia Labs,
at other Department of Energy labs, and by our industrial and academic collaborators. Often, this real-world
experience has provided motivation for research into new areas of optimization. The Dakota development team
welcomes feedback on the capabilities of this software toolkit, as well as suggestions for new areas of research.
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Chapter 2

Dakota Tutorial

2.1 Quickstart

This section provides an overview of acquiring and installing Dakota, running a simple example, and looking
at the basic output available. More detailed information about downloads and installation can be found on the
Dakota website http://dakota.sandia.gov.

2.1.1 Acquiring and Installing Dakota

Dakota operates on most systems running Unix or Linux operating systems as well as on Windows, natively in
a Command Prompt window, and (optionally) with the help of a Cygwin emulation layer. Dakota is developed
and most extensively tested on Redhat Enterprise Linux with GNU compilers, but additional operating systems
/ compiler combinations are tested nightly as well. See the Dakota website for more information on supported
platforms for particular Dakota versions.

Department of Energy users: Dakota may already be available on your target system. Sandia users should visit
http://dakota.sandia.gov/sandia_only/ for information on supported Dakota installations on en-
gineering networks and cluster computers, as well as for Sandia-specific downloads. At other DOE institutions,
contact your system administrator about Dakota availability. If not available for your target platform, you may
still download Dakota as described below.

Getting started with Dakota typically involves the following steps:

1. Download Dakota.
You may download binary executables for your preferred platforms or you can compile Dakota from source
code. Downloads are available from http://dakota.sandia.gov/download.html.

2. Install Dakota.
Instructions are available from http://dakota.sandia.gov/install.html. Guidance is also
included in the Dakota source files, including Dakota_Source/INSTALL. Further platform/operating
system-specific guidance can be found in Dakota_Source/examples/platforms.

3. Verify that Dakota runs.
To perform a quick check that your Dakota executable runs, open a terminal window (in Windows, cmd.exe),
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and type:
dakota -v

Dakota version infomation should display in your terminal window. For a more detailed description of
Dakota command line options, see Section 2.4.

4. Participate in Dakota user communities.
Join Dakota mail lists to get the most up-to-date guidance for downloading, compiling, installing, or run-
ning. For information about mail lists, getting help, and other available help resources, see
http://dakota.sandia.gov/resources.html.

2.1.2 Running Dakota with a simple input file

This section is intended for users who are new to Dakota, to demonstrate the basics of running a simple example.

First Steps

1. Make sure Dakota runs. You should see Dakota version information when you type: dakota -v
2. Create a working directory

3. Copy rosenmultidim.in from the Dakota/examples/users/ directory to the working direc-
tory — see Section 1.5 for help.

4. From the working directory, run dakota —-i rosenmultidim.in —-o rosenmultidim.out
> rosenmultidim.stdout

What should happen
Dakota outputs a large amount of information to help users track progress. Four files should have been created:

1. The screen output has been redirected to the file rosen multidim. stdout.
The contents are messages from Dakota and notes about the progress of the iterator (i.e. method/algorithm).

2. The output file rosen multidim. out contains information about the function evaluations.

3. rosenmultidim.dat is created due to the specification of tabular_graphics_data and
tabular_graphics_file. This summarizes the variables and responses for each function evaluation.

4. dakota.rst is arestart file. If a Dakota analysis is interrupted, it can be often be restarted without losing
all progress.

In addition to the files, some plots are created due to the specification of graphics. These can be helpful when
processing the data or diagnosing unexpected results.

Dakota has some data processing capabilities for output analysis. The output file will contain the relevant results.
In this case, the output file has details about each of the 81 function evaluations. For more advanced or customized
data processing or visualization, the tabular data file can be imported into another analysis tool.

What now?

e Assuming Dakota ran successfully, skim the three text files (restart files are in a binary format). These are
described further in Section 2.1.3.
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e This example used a parameter study method, and the Rosenbrock test problem. More details about the
example are in Section 2.3.2 and the test problem is described in Sections 2.3.1 and 20.2.

e Explore the many methods available in Dakota in Chapters 3— 7.

e Try running the other examples in the same directory. These are mentioned throughout the manual, and
listed in Table 2.1 for convenience.

e [earn the syntax needed to use these methods. For help running Dakota, see Section 2.4 and for input file
information, see Section 2.2.

e Learn how to use your own analysis code with Dakota in Chapter 16.

2.1.3 Examples of Dakota output

Beyond numerical results, all output files provide information that allows the user to check that the actual analysis
was the intended analysis. More details on all outputs can be found in Chapter 13.

Screen output saved to a file

Whenever an output file is specified for a Dakota run, the screen output itself becomes quite minimal consisting
of version statements, environment statements and execution times.

Output file

The output file is much more extensive, because it contains information on every function evaluation (See Figure
2.1). It is organized into three basic parts:

1. Information on the problem

For this example, we see that a new restart file is being created and Dakota has carried out a
multidim_parameter_study with 8 partitions for each of two variables.

2. Information on each function evaluation

Each function evaluation is numbered. Details for function evaluation 1 show that at input vari-
able values 1 = —2.0 and 2 = —2.0, the direct rosenbrock function is being evaluated. There
is one response with a value of 3.609e+03.

3. Summary statistics

The function evaluation summary is preceeded by << << <. For this example 81 total evalua-
tions were assessed; all were new, none were read in from the restart file. Correlation matrices
complete the statistics and output for this problem. Successful runs will finish with <<<<<
Iterator study_type completed.

Tabular output file

For this example, the default name for the tabular output file dakota_tabular.dat was changed in the input
file to rosen.multidim.dat. This tab-delimited text file (Figure 2.1.3) summarizes the inputs and outputs to
the function evaluator. The first line contains the names of the variables and responses:

Jeval.id x1 x2 response_fn_1
The number of function evaluations will match the number of evaluations listed in the summary part of the output
file for single method approaches; the names of inputs and outputs will match the descriptors specified in the input
file. This file is ideal for import into other data analysis packages.
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{Writing new restart file dakota.rst
methodName
gradientType = none
hessianType = none

>>>>> Running multidim_parameter_study iterator.

Multidimensional parameter study for variable partitions of

Parameters for function evaluation 1:

Direct function: invoking rosenbrock

Active response data for function evaluation 1:
Active set vector = { 1 }

<<<<< Function evaluation summary: 81 total (81 new, 0 duplicate)

Simple Correlation Matrix among all inputs and outputs:

response_fn_1 -3.00705e-03 -5.01176e-01 1.00000e+00

<<<<< Iterator multidim_parameter_study completed.}

= multidim_parameter_study

-2.0000000000e+00 x1
-2.0000000000e+00 x2

3.6090000000e+03 response_fn_1

x1 x2 response_fn_1
x1 1.00000e+00
x2 1.73472e-17 1.00000e+00

Figure 2.1: Rosenbrock 2-D parameter study example: excerpt from output file

%eval_id

Sw N

x1 x2 response_fn_1
-2 -2 3609
-1.5 -2 1812.5
-1 -2 904
-0.5 -2 508.5

Figure 2.2: Rosenbrock 2-D parameter study example: excerpt from tabular data file
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2.2 Dakota Input File Format

See Section 1.5 for location of all files referenced in this manual.

There are six specification blocks that may appear in Dakota input files. These are identified in the input file
using the following keywords: variables, interface, responses, model, method, and environment. These keyword
blocks can appear in any order in a Dakota input file. At least one variables, interface, responses, and method
specification must appear, and no more than one environment specification should appear.

Figure 2.3 shows the relationships between the six keyword blocks. The environment specifies high level Dakota
settings, and identifies the top level method. A method runs a model. A model block defines the connections
between variables, the interface, and responses. Figure 2.3 shows the most common relationships between blocks
but others are possible. Most Dakota analyses define a single method which runs a single model. Advanced cases
are discussed in Chapter 14.

Environment Environment
Top Level Method | Top Level Method |
Model Model 1 Method 2
Variables Variables 1 | x

Model 2

Interface 1

Interface Variables 2

Responses 1

Interface 2

Responses

Responses 2

Figure 2.3: Relationship between the six blocks, for a simple study (left) and an advanced, multi-method study
(right)

For a more concrete example, a simple Dakota input file, rosen_multidim. in, for a two-dimensional param-
eter study on Rosenbrock’s function is shown in Figure 2.4. This input file will be used to describe the basic
format and syntax used in all Dakota input files. The results are shown later, in Section 2.3.2.

Additional syntax features for Dakota input files include use of the # symbol to indicate a comment, use of
single or double quotes for string inputs (e.g., * x1'), the use of commas and/or white space for separation of
specifications, and the optional use of “=" symbols to indicate supplied data. See the Dakota Reference Manual [3]
for additional details on this input file syntax.

The first block of the input file shown in Figure 2.4 is the environment block. This keyword block is used to
specify the general Dakota settings such as Dakota’s graphical output (via the graphics flag) and the tabular
data output (via the tabular_graphics_data keyword). In addition, it identifies the top_level method
that will control the Dakota study.

The method block of the input file specifies which iterative method Dakota will employ, such as a parameter
study, optimization method, data sampling technique, etc. The keyword multidim parameter_study in
Figure 2.4 calls for a multidimensional parameter study, while the keyword partitions specifies the number
of intervals per variable. In this case, there will be eight intervals (nine data points) evaluated between the lower
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# Dakota Input File: rosen_multidim.in
# Usage:
# dakota —-i rosen_multidim.in -o rosen_multidim.out > rosen_multidim.stdout
environment
graphics
tabular_graphics_data
tabular_graphics_file = ’"rosen_multidim.dat’

method
multidim_parameter_study
partitions = 8 8

model
single

variables
continuous_design = 2
lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptors rx1’ "x2"

interface
analysis_driver = ’'rosenbrock’
direct

responses
response_functions = 1
no_gradients
no_hessians

Figure 2.4: Rosenbrock 2-D parameter study example: the Dakota input file.

and upper bounds of both variables (bounds provided subsequently in the variables section), for a total of 81
response function evaluations.

The model block of the input file specifies the model that Dakota will use. A model provides the logical unit
for determining how a set of variables is mapped into a set of responses in support of an iterative method. The
model allows one to specify a single interface, or to manage more sophisticated mappings involving surrogates
or nested iteration. For example, one might want to use an approximate model for optimization or uncertainty
quantification, due to the lower computational cost. The model keyword allows one to specify if the iterator will
be operating on a data fit surrogate (such as a polynomial regression, neural net, etc.), a hierarchical surrogate
(which uses the corrected results of a lower fidelity simulation model as an approximation to a higher fidelity
simulation), or a nested model. See Chapter 8 for additional model specification details. If these advanced
facilities for surrogate modeling or nested iteration are not required, then it is not necessary to specify the mode 1
keyword at all, since the default behavior is the use of a “single” model constructed with the last set of responses,
variables, and interface specified. In Figure 2.4, the keyword single explicitly specifies the use of a single
model in the parameter study, even though this is the default.

The variables block of the input file specifies the characteristics of the parameters that will be used in the problem
formulation. The variables can be continuous or discrete, and can be classified as design variables, uncertain
variables, or state variables. See Chapter 9 for more information on the types of variables supported by Dakota.
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The variables section shown in Figure 2.4 specifies that there are two continuous design variables. The sub-
specifications for continuous design variables provide the descriptors “x1” and “x2” as well as lower and upper
bounds for these variables. The information about the variables is organized in column format for readability. So,
both variables x; and x5 have a lower bound of -2.0 and an upper bound of 2.0.

The interface block of the input file specifies what approach will be used to map variables into responses as well
as details on how Dakota will pass data to and from a simulation code. In this example, the keyword direct is
used to indicate the use of a function linked directly into Dakota. Alternatively, fork or system executions can
be used to invoke instances of a simulation code that is external to Dakota, as explained in Section 2.3.5.2 and
Chapter 16. The analysis_driver keyword indicates the name of the test function. With fork or system,
default file names would be used for passing data between Dakota and the simulation code.

The responses block of the input file specifies the types of data that the interface will return to Dakota. For
the example shown in Figure 2.4, the assignment num_objective_functions = 1 indicates that there is
only one objective function. Since there are no constraints associated with Rosenbrock’s function, the keywords
for constraint specifications are omitted. The keywords no_gradients and no_hessians indicate that no
derivatives will be provided to the method; none are needed for a parameter study.

2.3 Examples

This section serves to familiarize users about how to perform parameter studies, optimization, and uncertainty
quantification through their common Dakota interface. The initial examples utilize simple built in driver functions;
later we show how to utilize Dakota to drive the evaluation of user supplied black box code. The examples
presented in this chapter are intended to show the simplest use of Dakota for methods of each type. More advanced
examples of using Dakota for specific purposes are provided in subsequent, topic-based, chapters.

2.3.1 Rosenbrock Test Problem

The examples shown later in this chapter use the Rosenbrock function [105] (also described in [49], among other
places), which has the form:

f(z1,20) = 100(zg — 22)2 + (1 — 1) 2.1

A three-dimensional plot of this function is shown in Figure 2.5(a), where both x; and x5 range in value from —2
to 2. Figure 2.5(b) shows a contour plot for Rosenbrock’s function. An optimization problem using Rosenbrock’s
function is formulated as follows:

minimize f(z1,22)
x € R?
subject to —2<x1 <2 2.2)
—2<x9<2

Note that there are no linear or nonlinear constraints in this formulation, so this is a bound constrained optimization
problem. The unique solution to this problem lies at the point (z1, z2) = (1, 1), where the function value is zero.

Several other test problems are available. See Chapter 20 for a description of these test problems as well as further
discussion of the Rosenbrock test problem.
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Figure 2.5: Rosenbrock’s function: (a) 3-D plot and (b) contours with x; on the bottom axis.

2.3.2 Two-Dimensional Grid Parameter Study

Parameter study methods in the Dakota toolkit involve the computation of response data sets at a selection of
points in the parameter space. These response data sets are not linked to any specific interpretation, so they may
consist of any allowable specification from the responses keyword block, i.e., objective and constraint functions,
least squares terms and constraints, or generic response functions. This allows the use of parameter studies in
direct coordination with optimization, least squares, and uncertainty quantification studies without significant
modification to the input file.

An example of a parameter study is the 2-D parameter study example problem listed in Figure 2.4. This is
executed by Dakota using the command noted in the comments:

dakota —-i rosen_multidim.in —-o rosen_multidim.out > rosen_multidim.stdout

The output of the Dakota run is written to the file named rosen_multidim.out while the screen output, or
standard output, is redirect to rosen_multidim. For comparison, files named rosenmultidim.out.sav
and rosenmultidim.stdout.sav are included in the Dakota/examples/users directory. As for
many of the examples, Dakota provides a report on the best design point located during the study at the end of
these output files.

This 2-D parameter study produces the grid of data samples shown in Figure 2.6. In general, a multidimensional
parameter study lets one generate a grid in multiple dimensions. The keyword multidim parameter_study
indicates that a grid will be generated over all variables. The keyword partitions indicates the number of grid
partitions in each dimension. For this example, the number of the grid partitions are the same in each dimension
(8 partitions) but it would be possible to specify (partitions = 8 2), and have only two partitions over the second
input variable. Note that the graphics flag in the environment block of the input file could be commented out
since, for this example, the iteration history plots created by Dakota are not particularly instructive. More inter-
esting visualizations can be created by importing Dakota’s tabular data into an external graphics/plotting package.
Common graphics and plotting packages include Mathematica, Matlab, Microsoft Excel, Origin, Tecplot, and
many others. (Sandia National Laboratories and the Dakota developers do not endorse any of these commercial
products.)
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Figure 2.6: Rosenbrock 2-D parameter study example: location of the design points (dots) evaluated.

2.3.3 Gradient-based Unconstrained Optimization

Dakota’s optimization capabilities include a variety of gradient-based and nongradient-based optimization meth-
ods. This subsection demonstrates the use of one such method through the Dakota interface.

A Dakota input file for a gradient-based optimization of Rosenbrock’s function is listed in Figure 2.7. The
format of the input file is similar to that used for the parameter studies, but there are some new keywords in
the responses and method sections. First, in the responses block of the input file, the keyword block start-
ing with numerical_gradients specifies that a finite difference method will be used to compute gradi-
ents for the optimization algorithm. Note that the Rosenbrock function evaluation code inside Dakota has the
ability to give analytical gradient values. (To switch from finite difference gradient estimates to analytic gra-
dients, uncomment the analytic_gradients keyword and comment out the four lines associated with the
numerical_gradients specification.) Next, in the method block of the input file, several new keywords have
been added. In this block, the keyword conmin_frcg indicates the use of the Fletcher-Reeves conjugate gra-
dient algorithm in the CONMIN optimization software package [127] for bound-constrained optimization. The
keyword max_iterations is used to indicate the computational budget for this optimization (in this case, a
single iteration includes multiple evaluations of Rosenbrock’s function for the gradient computation steps and the
line search steps). The keyword convergence_tolerance is used to specify one of CONMIN’s convergence
criteria (under which CONMIN terminates if the objective function value differs by less than the absolute value
of the convergence tolerance for three successive iterations).

The Dakota command is noted in the file, and copies of the outputs are in the Dakota/examples/users
directory, with .sav appended to the name. When this example problem is executed, Dakota creates some
iteration history graphics similar to the screen capture shown in Figure 2.8(a). These plots show how the objective
function and design parameters change in value during the optimization steps. The scaling of the horizontal and
vertical axes can be changed by moving the scroll knobs on each plot. Also, the “Options” button allows the user
to plot the vertical axes using a logarithmic scale. Note that log-scaling is only allowed if the values on the vertical
axis are strictly greater than zero.

Figure 2.8(b) shows the iteration history of the optimization algorithm. The optimization starts at the point
(x1,22) = (—1.2,1.0) as given in the Dakota input file. Subsequent iterations follow the banana-shaped val-
ley t